Importance Sampling in the Monte Carlo Study of Sequential Tests

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the washback effect of discretepoint vs. integrative tests on the retention of content in knowledge tests

در این پایان نامه تاثیر دو نوع تست جزیی نگر و کلی نگر بر به یادسپاری محتوا ارزیابی شده که نتایج نشان دهندهکارایی تستهای کلی نگر بیشتر از سایر آزمونها است

15 صفحه اول

Monte Carlo inference via greedy importance sampling

We present a new method for conducting Monte Carlo inference in graphical models which combines explicit search with generalized importance sampling. The idea is to reduce the variance of importance sampling by searching for significant points in the target distribution. We prove that it is possible to introduce search and still maintain unbiasedness. We then demonstrate our procedure on a few ...

متن کامل

Modified Monte Carlo with Importance Sampling Method

Monte Carlo simulation methods apply a random sampling and modifications can be made of this method is by using variance reduction techniques (VRT). VRT objective is to reduce the variance due to Monte Carlo methods become more accurate with a variance approaching zero and the number of samples approaches infinity, which is not practical in the real situation (Chen, 2004). These techniques are ...

متن کامل

Importance Sampling in Rigid Body Diffusion Monte Carlo

We present an algorithm for rigid body diffusion Monte Carlo with importance sampling, which is based on a rigorous short-time expansion of the Green’s function for rotational motion in three dimensions. We show that this short-time approximation provides correct sampling of the angular degrees of freedom, and provides a general way to incorporate importance sampling for all degrees of freedom....

متن کامل

Importance Sampling for Monte Carlo Estimation of Quantiles

This paper is concerned with applying importance sampling as a variance reduction tool for computing extreme quantiles. A central limit theorem is derived for each of four proposed importance sampling quantile estimators. EEciency comparisons are provided in a certain asymptotic setting, using ideas from large deviation theory.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 1976

ISSN: 0090-5364

DOI: 10.1214/aos/1176343541